7 ปัจจัยอันตรายที่ทำให้กองทุนที่ใช้ Machine Learning ต้องพบจุดจบ ในมุมมองของคุณ Marcos Lopez de Prado

❌ 7 ปัจจัยอันตรายที่ทำให้กองทุนที่ใช้ Machine Learning ต้องพบจุดจบ ในมุมมองของคุณ Marcos Lopez de Prado ผู้จัดการกองทุนระดับมหายักษ์ใหญ่ ของโลกอย่าง AQR Capital และ หัวหน้ากลุ่ม วิจัย Machine Learning ของกองทุน ⚠️ เนื้อหาเชิงเทคนิคระดับสูง ในงานวิจัยของ Quants ในองกรใหญ่ อาจจะมีความซับซ้อนไปนิด แอดพยายามเขียนให้เข้าใจง่ายแล้ว ได้แค่นี้จริงๆ ค่ะ ⚠️ 1. The Sisyphean Quants (รูปที่ #1) ปัญหาข้อแรก ได้นำชื่อมาจาก “Sisyphean task” ที่เป็นเรื่องราวของชายชาวกรีกคนหนึ่งที่โดนลงโทษให้เข็ญก้อนหินก้อนมหึมาขึ้นไปบนยอดเขา ซึ่งเป็นงานที่แทบจะเป็นไปไม่ได้ การออกแรงดันทุกครั้ง ก็เพื่อที่จะพบกับการกลิ้งตกลงมาอีกครั่งของก้อนหินเท่านั้น คุณ Marcos พบว่า สาเหตุแรกเลยที่ทำให้กองทุนที่ใช้ Machine Learning ต้องประสบกับความล้มเหลว ก็คือ ปัญหาพื้นๆ ของการบริหารงาน ที่ขาดการทำงานในลักษณะของ “การร่วมมือกัน” เพื่อดึงคุณลักษณะเด่นของแต่ละบุคคลออกมาใช้…

Deep Learning กับการช่วยอนุรักษ์วาฬ ใน "Saving Whale Project"

บทความนี้ เราจะมาทำความรู้กับอีกหนึ่งโครงการที่มีการนำ Machine Learning มาใช้เพื่อแก้ปัญหาที่เกิดขึั้นจริง เพื่อแก้ปัญหาการสูญพันธ์ของปลาวาฬหายากกัน ก่อนอื่นเรามาดูจุดเริ่มต้นของปัญหากันก่อนค่ะ ปัญหา จะมีซักกี่คนที่รู้ว่า สัตว์เลี้ยงลูกด้วยนมขนาดมหึมาอย่าง “วาฬ” หรือ ที่นิยมเรียกกันติดปากว่า “ปลาวาฬ” ซึ่งจริงๆ แล้ว ไม่ใช่ปลา เพียงแค่อาศัยอยู่ในน้ำเท่านั้น! เป็นสิ่งมีชีวิตที่ “ใกล้” จะสูญพันธ์ โดยเฉพาะวาฬสายพันธ์ที่หายากต่างๆ เช่น Narwhal, North Atlantic Right Whale, Sei Whale มาดูตัวอย่างหน้าตาวาฬที่ได้รับการจัดว่ากำลังเสี่ยงต่อการสูญพันธุ์ โดย WWF (World Wide Fund for Nature) กันก่อนค่ะ ดังนั้น จึงต้องมีกลุ่มนักอนุรักษ์ที่คอยสอดส่องดูแลเจ้าวาฬเหล่านี้อย่างใกล้ชิด แต่ปัญหามันอยู่ที่ว่า เจ้าสัตว์โลกตัวมหึมาเหล่านี้ อาศัยอยู่ในทะเล ถึงแม้จะต้องขึ้นมาหายใจที่ผิวน้ำ แต่ก็ไม่ได้โผล่ขึ้นมาให้เราเห็นทั้งตัว และ ไม่ได้โผล่ขึ้นมาบ่อยๆ แล้วนักอนุรักษ์จะรู้ได้ยังไงล่ะ ว่าตัวไหน เป็นตัวไหน และ จำนวนของพวกมันเพิ่มขึ้น หรือ ลดลงอย่างไร???…

ประเมินความเสี่ยงด้วย Value at Risk (VaR) แต่ละแบบมีข้อดีข้อเสียอย่างไร

ความจริงเรื่องนี้ผมเคยเขียนไปเมื่อ 2-3 ปีก่อนแล้ววันนี้มีโอกาสผมขอนำกลับมาเขียนให้เป็นระบบและครอบคลุมขึ้นนะครับ Value at Risk (VaR) คืออะไร VaR คือ “โมเดลที่ใช้ในการประเมินความเสี่ยง” ของพอร์ตฟอลิโอวิธีหนึ่ง ที่ถูกนำมาใช้เพื่อตอบคำถามประเภทที่ ในช่วงเวลาหนึ่งๆ พอร์ตฟอลิโอของเราจะมีโอกาสเสียเงินได้มากเท่าไหร่ ที่ระดับความเชื่อมั่น (Confident Level) แค่ไหน ตัวอย่าง เช่น “จากข้อมูลรายเดือนที่เราของหุ้น ABC เป็นเวลา 30 ปี เรามีความมั่นใจ 95% ว่าถ้าเราถือหุ้นตัวนี้ไว้ในพอร์ตฟอลิโอของเรา หุ้นตัวนี้จะไม่ลดลงเกินกว่า 4% ในช่วงเวลา 1 เดือน” พูดง่ายๆคือ “มีโอกาสแค่ 5% ที่หุ้น ABC จะลดลงเกินกว่า 4% ในช่วง 1 เดือน” นั่นเองเป็น “VaR” เป็นโมเดลที่ใช้กันอย่างแพร่หลายในการวิเคราะห์ความเสี่ยง และวิธีการคำนวณ VaR ก็มีหลายวิธี ซึ่งผมจะแยกประเภท ดังนี้ Non-Parametric วิธีการที่ไม่ต้องใช้ตัวแปรใดๆ ใช้แค่…

การรู้จำรูปแบบสำหรับข้อมูลแบบตามลำดับเวลาด้วย Hidden Markov Model (Pattern Recognition with Sequential Data using HMM)

การค้นพบ “รูปแบบ” หรือ “Patterns” ที่ซ่อนอยู่ภายในข้อมูล เป็นอีกสาขาวิชาที่น่าสนใจ และ มีความท้าทายเป็นอย่างมาก เนื่องจากในปัจจุบันนี้ที่เรากำลังใช้ชีวิตอยู่ในโลกของข้อมูล ซึ่งเรากำลังพูดถึงข้อมูลจำนวนมหาศาล (ต้องขอคุณเทคโนโลยีในการเก็บข้อมูลที่ก้าวล้ำอย่างรวดเร็วไว้ ณ ที่นี้ด้วย!) ข้อมูลถูกเก็บบันทึก แทบจะทุกที่ทุกเวลา ไม่มีใครสามารถวิ่งหนีกระบวนการนี้ได้เลย “Data” หรือ “ข้อมูล” ถือเป็นสิ่งที่มีคุณค่ามหาศาล การมีข้อมูล ถูกเรื่อง ถูกเวลา นั้น ถึงขนาดเปลี่ยนยาจกเป็นเศรษฐี เปลี่ยนขาวเป็นดำ ได้เลยทีเดียว! แต่ถึงอย่างนั้นก็ตาม “ข้อมูล” นี้ จะกลายเป็นแค่ “ขยะไซเบอร์” ทันที ถ้ามันไม่ได้ถูกนำมาใช้งานอย่างถูกต้อง จุดนี้นี่เองที่ทำให้การศึกษาในสาขา “Pattern Recognition” หรือ การระบุรูปแบบที่ซ่อนอยู่ภายในข้อมูล ได้รับความสนใจเป็นอย่างมาก เพราะสามารถขุดค้นเอา “ความรู้” ที่ซ่อนอยู่ในข้อมูล เพื่อนำไปสู่การใช้งานอย่างเหมาะสมได้ “Pattern Recognition” มีด้วยกันมากมายหลากหลายรูปแบบมาก ขึ้นอยู่กับลักษณะการใช้งาน ระบบ Pattern Recognition ยกตัวอย่างระบบที่เราคุ้นเคยกัน เช่น ระบบรู้จำใบหน้า (Face…

คุยกันเรื่อง “อนาคตของ Machine Learning ในโลกของการลงทุน” กับอดีตหัวหน้าทีม Machine Learning แห่งกองทุนระดับแสนล้านดอลล่าห์อย่าง “AQR Capital Managment” และผู้ชนะรางวัล “Quant of the Year 2019” กัน

วันนี้เรามาจับเข่าคุยกับ ดร. Marcos Lopez de Prado กันเรื่องประเภทของ Quant 2 ประเภทในตลาดทุกวันนี้ม เรื่องอนาคตของการลงทุนในยุคใหม่หลังจากเข้าสู่ยุคแห่ง Machine Learning โลกการลงทุนจะเปลี่ยนแปลงอย่างไร องกรค์ควรปรับตัวอย่างไร มีปัญหาอะไรที่ท้าทายบ้าง สถาบันการลงทุนขนาดใหญ่มีทางเลือกอะไรบ้างในโลกที่เปลี่ยนไปแล้ว และปิดท้ายที่อนาคตของตัวเค้าเองหลังจากที่เพิ่งลาออกจาก AQR Capital Managment ว่ามีโปรเจ็คอะไรต่อไปครับ Q: การลงทุนเชิง Quantitative นี่ได้ผลจริงไหมครับ? A: ก่อนที่ผมจะตอบคำถามนี้ ผมว่าเราควรมาทำความเข้าใจกับความแตกต่างระหว่างองค์กร Math-quant และ Econ-quant 1: องค์กร “Math-quant” นั้นได้ถูกก่อตั้งและดำเนินงานโดย นักคณิตศาสตร์ นักฟิสิกห์ นักวิทยาการคอมพิวเตอร์ และ วิศวกร พวกเขามีกองทุนบริหารความเสี่ยงที่ทำผลงานได้ดีที่สุดในประวัติศาสตร์, โดยที่ Sharpe Ratio ของเขามักจะสูงมากกว่า 2 ด้วย: Renaissance Technologies, Two Sigma , DE Shaw,…

ว่าด้วย Recurrent Neural Networks: Part 1

ไม่ได้เขียนบล็อคซะนานเนื่องจากป่วยไปพักใหญ่ ตอนนี้กลับมา จะเริ่มกลับมาเขียนแล้วครับ โดยเรื่องที่ผมคิดไว้คราวนี้จะเป็น “การทำนายอนาคตของข้อมูล Time series” ครับ เพราะเป็นช่วงเวลาที่พอดีกับที่ผมต้องสรุปผลการทดลองส่งแลปพอดีครับ เลยจะขีด ๆ เขียน ๆ ตามไปด้วยเลยก็แล้วกัน ในยุคที่ Deep Learning กำลังครองโลกอยู่นี้ก็คงหลีกเลี่ยงไม่ได้ที่จะต้องกล่าวถึง Recurrent Neural Network (RNN) แต่ก่อนจะไปถึงจุดนั้นเราจะเริ่มจากอะไรที่เบสิก ๆ ก่อน โดยบทความแรกจะเริ่มตั้งแต่เรื่องพื้นฐาน ว่าด้วย Neural Network จาก Linear regression ไปจนถึง Simple Recurrent Neural Network (Simple RNN) Time series และ Simple Neural Network ข้อมูลของเราจะเป็น “Time series” หรือ “อนุกรมเวลา” ได้ ก็ต่อเมื่อ “มีอินเด็กซ์เวลา” มาเกี่ยวข้องนั่นแหละครับ ตัวอย่างเช่น…

Big Data and Machine Learning อนาคตของโลกแห่งการลงทุน!

วันนี้มีบทความจั่วหัวร้อนแรงอย่าง “Go with big data and machine learning, or leave finance to thouse who do!” หรือ ที่แปลเป็นภาษาไทยแบบแสบๆ คัน ว่า “จะใช้ Big data และ Machine Learning ในงานไฟแนนซ์ หรือ ปล่อยเรื่องไฟแนนซ์ให้คนที่ทำได้เค้าทำกัน!” เป็นบทความที่จั่วหัวได้รุนแรงอีกบทความหนึ่งเลยค่ะ เห็นได้ชัดว่าผู้เขียนอย่าง David H Bailey นักวิจัยอาวุโส สาย คณิตศาสตร์ และ คอมพิวเตอร์ ได้แสดงความเชื่อออกมาเต็มที่ว่า Big Data และ Machine Learning จะเป็นอนาคตของงานด้านไฟแนนซ์ รวมถึงการลงทุน อย่างแน่นอน ถึงขนาดที่ว่าใครไม่ลุกขึ้นมาเรียนรู้ ก็จะต้องเดินออกจากสายงานกันไปเลยทีเดียว! เพื่อลดบรรยากาศแห่งความร้อนแรงนี้ ผู้เขียนจึงจะขอเป็นเพียงผู้เล่าให้ฟัง และ เพิ่มเติมข้อมูลในบางส่วนที่น่าสนใจ โดยจะไม่เพิ่มเติมความคิดเห็นส่วนตัวลงไปนะคะ เพียงแค่เห็นว่า…

Basic Pair Trading with cointegration

สืบเนื่องจากที่แอดได้ไปเข้าร่วมประชุมกับทีมงาน Quantopian ที่ลอนดอน เมื่อปีที่แล้ว หัวข้อที่ทำ workshop กันในงานประชุมก็คือ การพัฒนาเทคนิคการ Hedging ด้วยการทำ Pair Trading ด้วย การใช้ค่าทางสถิติ Cointegration เข้ามาช่วย ซึ่งเป็นหัวข้อที่น่าสนใจมากอีกหัวข้อนึง  หลังกลับมาจากงานประชุม แอดจึงได้เขียนบทความขึ้นมา 2 บทความ เพื่ออธิบายทฤษฏี และ แนวทางการประยุกต์ใช้ Cointegration ในการทำ Pair Trading ซึ่งสามารถหาอ่านได้ใน blog (เดี๋ยวจะลงลิงก์ด้านล่างให้นะคะ) หลังจากลงบทความไปแล้ว ได้รับความสนใจอย่างมากหลังไมค์ มีแฟนเพจหลายท่านต้องการนำไอเดียไปพัฒนาต่อ ทางเราจึงนำทฤษฏีนี้เข้ามาในคอร์สใหม่ เพื่อ ทำการพัฒนา และ Backtest อย่างละเอียด ซึ่งตอนนี้กำลังอยู่ระหว่างการจัดทำ ระหว่างนี้ เลยนำไฟล์ Source code มาฝากหลายๆ ท่านที่สนใจกันก่อนค่ะ เผื่อใครอยากนำไปพัฒนาต่อ และ Backtest ด้วยตัวเอง ไม่ต้องรอเรียนก็จะได้สามารถทำได้  (สำหรับการสอนอย่างละเอียดรวมถึงการ Backtest เพื่อใช้งานจริง…

“การตั้งเวลาทำงาน” เรื่องเล็กๆ ที่ประโยชน์ไม่เล็ก!

Python “time” library เรื่องง่ายๆ ที่คนไม่ค่อยใส่ใจกัน แต่ต่อไปจะมีประโยชน์มากมายในการ feed ข้อมูล live stream จาก Brokers หรือ ผู้ให้บริการข้อมูล real-time ต่างๆ มาทำความรู้จักมันกันดีกว่า ง่ายๆ ไม่เกิน 10 นาที รู้เรื่อง!!! https://www.youtube.com/watch?v=GwPK-EgrM6Y&t=5s

Ray Dalio’s woring style

พาไปดูวัฒนธรรมการทำงานใน Bridgewater Associates inverstment firm ที่ใหญ่ที่สุดของโลก ที่บริหารโดยนักลงทุนชื่อดังอย่างคุณ Ray Dalio กัน สวัสดีค่ะ โพสนี้ออกตัวก่อนว่าไม่เกี่ยวกับการลงทุนนะคะ แต่แอดผ่านไปเจอมา แล้วคิดว่า น่าสนใจดี เลยหยิบมาฝากกันค่ะ เป็นการสัมภาษณ์คุณ Ray Dalio แค่ 5 นาทีเท่านั้น จากที่ไม่เคยคิดจะอ่านหนังสือ Principles เพราะ หนังสือเล่มโตมากกก คิดว่าคงอ่านไม่จบ 555 รู้สึกอยากลองอ่านดูเลยค่ะ อยากรู้ว่าเค้าคิดอะไร ทำอะไร รู้สึกว่าเป็นบุคคลที่มีความคิด และ หลักการทำงานที่น่าสนใจมากๆ อีกท่านนึง Idea mertocacy เป็นการสัมภาษณ์เกี่ยวกับการทำงานในองค์กร แบบ Idea mertocacy หรือ แนวคิดเชิงความสามารถนิยม ซึ่งคุณ Dalio ให้ความเห็นว่าในการทำให้องค์กรมีทิศทางไปในทางนี้ได้ เกิดจาก 2 สิ่งคือ Radical Truthfulness กับ Radical Transparency ซึ่งก็คือ…

ข้อมูล Open High Low Close ตาม Time Frame ที่เรารู้จักมีจุดอ่อนอย่างไร?

เชื่อว่าหลายๆคนที่ลงทุนอยู่น่าจะคุ้นเคยกับข้อมูลการลงทุน Format แบบ Open, High, Low, Close ที่มักจะตัดแบ่งตามช่วงเวลาหนึงๆ วันนี้เราจะมาแนะนำให้รู้จัก Standard Bar กันครับก็จะแบ่งด้วย 3 แบบคือ Time bar, Volume bar และ Dollar bar โดยข้อมูลที่พวกเรารู้จักกันดีก็คือ Time bar นั่นเอง แต่ข้อมูลแต่ละแบบก็มีข้อดีข้อเสียต่างกันไปไปครับ Time bar time bar ก็คือ สิ่งที่เรารู้จักกันดีครับคือการเก็บข้อมูลตามช่วงเวลาหนึงๆ เช่น ตัดทุก 15, 30, 60 นาที, ชั่วโมง , รายวัน, สัปดาห์ กันดี โดยมักจะประกอบไปด้วย time stamp ตามด้วย open high low close volume หรือ bid ask…

“Factor investing” เส้นทางสายใหม่ใน Bond market

บทความนี้เขียนเมื่อ วันที่ 9 กรกฏาคมที่ผ่านมานี่เอง พูดถึงแนวโน้มการเปลี่ยนแปลงการลงทุนภายใน Bond markets ว่า ในยุคที่เรากำลังอยู่ในช่วงตลาดขาขึ้นแบบนี้ กลุ่มของ Hedge Funds/ Funds จำเป็นต้องมีการแข่งขันกันอย่างเข้มข้น เพื่อให้นักลงทุนไม่ถอดใจหันหนีไปลงทุนกับ Index Tracking Funds กันหมด  และ แนวทางของกลยุทธ์ที่ผู้เขียนคาดว่าจะเป็นแนวโน้มใหม่ที่เหล่า Hedge Funds จะหันหัวเรือเข้าไปหา เพื่อให้มีค่า Beta ที่สูงขึ้น และ นำไปสู่การรักษานักลงทุนเอาไว้กับตัวเอง ก็คือ “Factor Investing” แนวคิดนี้ได้ถูกนำเสนออย่างเป็นทางการใน paper ของคุณ Patrick Houweling, Porfolio Manager แห่ง Robeco – the Investment Engineers จากกรุงลอนดอน ประเทศอังกฤษ ในหัวข้อ “Factor Investing in Corporate Bond Mark” (ลงลิงก์ให้ท้ายบทความ)…

[Reinforcement Learning 101] ตะลุยคาสิโนด้วย RL: Muti-Armed Bandit (2)- UCB1

จากบทความที่แล้ว เราได้พาไปดูการกำหนดปัญหา การไปเล่น Slot machine ที่คาสิโนของเราและได้หาวิธีการประเมินโอกาสชนะของเครื่อง Slot machine ด้วยวิธีการ Epsilon greedy มาแล้วและได้เปรียบเทียบผลลัพธ์ดู นับว่าทำงานได้ดีประมาณหนึง เอาเข้าจริงๆวิธีการนั้นก็ไม่ได้เป็นอะไรมากไปกว่าการคำนวณ mean ของแต่ละเครื่องผ่านการเล่น Slot machine แต่ละรอบๆเสริมด้วยวิธีการสุ่มเล่นเครื่อง Slot machine บ้างเป็นครั้งคราวเท่านั้นเอง วันนี้เราจะมาดูสมการคณิตศาสตร์ที่ซับซ้อนขึ้นมาอีกนิดหนึง(นิดเดียว) UCB1 ตัวนี้ก็ใช้ในการประเมิน mean ตัวหนึงทำหน้าที่เหมือน Epsilon greedy แต่วิธีการทำนั้นต่างกัน เนื่องจากเราจะแก้ปัญหาเดิม ก่อนอื่นผมขอนำ โอกาสในการชนะของ Slot machine มาแปะกันอีกครั้งนะครับ ​เครื่องที่ 1 มี win rate 10% ต่อการเล่นแต่ละครั้ง เครื่องที่ 2 มี win rate 20% ต่อการเล่นแต่ละครั้ง เครื่องที่ 3 มี win rate 50%…