กลยุทธ์ Day of Week ของคุณ Larry R. Williams ทำงานได้จริงไหม

สองสามวันก่อนผู้เขียนได้ อ่านหนังสือ “Long-term secrets to short-term trading” (มีเวอร์ชั่นแปลไทยโดยใช้ชื่อว่า กลยุทธ์เก็งกำไรเทรดระยะสั้น) ของคุณ Larry R. Williams ก็เลยอยากทดลองใช้กลยุทธ์ในการวิเคราะห์ข้อมูลหุ้นตามคุณ Larry ด้วยภาษา Python ดูซะหน่อย จึงถือโอกาสหยิบยกการทดลองนี้มาให้เพื่อนๆ ได้ดูกัน ถือเป็นการฝึกมือภาษา Python และทำความรู้จักกับข้อมูลหุ้นให้มากขึ้นกันไปในตัวด้วยค่ะ สมมุติฐานเริ่มต้น คุณ Larry ได้ตั้งสมมุติฐานของกลยุทธ์นี้ไว้ว่า “ราคาของหลักทรัพย์ในแต่ละวันของสัปดาห์มีลักษณะนิสัย (Characteristic) บางวันมีการปรับตัวขึ้นของราคามากกว่าวันอื่นๆ ในขณะที่บางวันที่การปรับตัวของราคาลดลงมากกว่าวันอื่นๆ อย่างมีนัยยะสำคัญ เช่น หุ้นอย่าง Google อาจจะมีลักษณะของการมีแรงซื้อเข้ามามากใน วันเริ่มต้น ของสัปดาห์ และ มีแรงขายมากใน วันสุดท้าย ของสัปดาห์ ถ้าหุ้นเหล่านั้นมีลักษณะนิสัยแบบที่ว่าจริง เราก็น่าจะสามารถนำข้อมูลนี้มาใช้ประโยชน์ในการสร้างกลยุทธ์การลงทุนได้” ผู้เขียนจึงขออาสา พามาทดลองกลยุทธ์ที่ว่านี้ไปด้วยกันค่ะ บทความนี้ผู้เขียนจะขอใช้หุ้นใน Dow Jones Industrial Average (DJIA) ในการทดลองนะคะ เราจะนำหุ้นเหล่านี้วิเคราะห์ลักษณะเฉพาะ (Characteristic)…

กลยุทธ์ง่ายๆ อย่างการเลือกหุ้นผู้ชนะ ทำกำไรได้จริงหรือ [แจก Code Portfolio Selection with Python]

สวัสดีครับ ไม่ได้เขียน blog ซะนาน วันนี้มีโอกาสได้กลับมาอัพเดต blog กันซะหน่อย วันนี้เรามาวอร์มอัพ Python กับการ backtest แบบง่ายๆกันดีกว่าครับ ลองมาขยายความกันหน่อยดีกว่า ว่าเงื่อนไขนี้เป็นอย่างไร ทำการเรียงหุ้นใน pool (กลุ่มของหุ้นที่เราเลือกมา) ทั้งหมด ที่มีผลงานดีที่สุดในช่วงเวลาที่ p โดยที่ p อาจจะเป็น 1 สัปดาห์ 1 เดือน 3 เดือน ฯลฯ ผ่านมา เลือกหุ้นที่ทำผลงานได้ดีที่สุดมา n ตัว แล้วถือไว้ใน portfolio ของเราเป็นช่วงเวลา อีก q หนึง (หรือจะมากกว่าน้อยกว่าก็แล้วแต่เราจะดีไซน์) คิดผลกำไร / ขาดทุนของช่วงเวลาที่ถือหุ้นเหล่านั้นไว้ใน portfolio (ช่วงเวลา q) ให้เราเริ่มกระบวนการเดิมซ้ำคือการไปเรียงลำดับผลงานของหุ้นใน portfolio ของเรา และ ในส่วนของ Pool ในส่วนของ portfolio…

Alternative bars อีกทางเลือกของการวิเคราะห์ข้อมูลเพื่อการลงทุน

เคยคิดกันมั้ย ว่าข้อมูลหุ้นที่เรานำมาวิเคราะห์กันในทุกๆ วันนี้ ข้อมูลที่มีหน้าตาที่คุ้นเคย อย่างราคาของวันนั้นๆ OHLC (Open-High-Low-Close) และ Volume ที่เกิดขึ้นในวันๆ หนึ่ง มันเหมาะสมเพียงใด ที่เราจะนำมาใช้ในการ วัดความเป็นความตาย (นี่ก็เวอร์ไป) ….. ในการตัดสินใจว่า จะลงทุนในหุ้นตัวใด เมื่อไหร่ เป็นจำนวนเท่าใด เคยนั่งคิดกันมั้ยว่า เจ้าข้อมูลตัวนี้มันสมเหตุสมผลหรือไม่ หรือ มีข้อมูลอื่นๆ ที่อาจจะนำมาลองใช้ได้หรือไม่ วันนี้ เราเลยนำบทความเกี่ยวกับ “ข้อมูลหุ้นทางเลือก” หรือ “Aternative bars” มาเล่าสู่กันฟังค่ะ โดยบทความนี้เราได้เอามาจาก คุณ Harkishan Singh Baniya ที่เค้าเอาไอเดียมาจาก Advances in Financial Machine Learning. ของคุณ marcos lopez de prado อีกทีหนึงนะคะ link บทความต้นฉบับ ที่นี่ บทความเก่าของเราเองที่เคยเขียนในเรื่องนี้ สามารถอ่านได้ที่นี่ อะไรคือ…

กรองสัญญาณเทรดง่ายๆ ด้วย K-mean clustering

สวัสดีครับ ห่างหายจากการอัพบล๊อคกันไปนานมาก เนื่องจากติดภารกิจหลายเดือน วันนี้จะกลับมาเขียนอัพบล็อคตามปรกติแล้วครับ ขอถือโอกาสมาปัดฝุ่นกันด้วยไอเดียง่ายๆ ที่ใช้ในการกรองสัญญาณเทรดด้วย Machine Learning กันก่อนก็แล้วกันครับ ข้อมูล ในที่นี้เราจะใช้ ขอมูลหุ้น MSFT(microsoft corporation) เป็นตัวอย่างในการทดลองนี้นะครับ โดยใช้ข้อมูลในการทดลองตั้งแค่ปี 2016 จนถึงปี 2018 เริ่มทำงาน โดยแรกเริ่ม เราจะใช้กลยุทธ์อย่าง Trend Following แบบธรรมดาๆ คือ ใช้ Feature หรือ indicator แค่ Simple Moving Average (SMA) 2 เส้น เท่านั้น SMA1 เส้นเร็ว xx วัน โดยผมจะปรับให้สั้นเพื่อให้เกิด noise SMA2 เส้นช้า yy วัน โดยผมจะปรับให้สั้นเพื่อให้เกิด noiseเช่นกัน จากนั้น ก็ประยุกต์ใช้ไอเดียง่ายๆ ที่ทราบกันอยู่แล้วคือ ให้ SMA1…

Startup แบบไหนที่ได้ไปต่อ! ทดสอบด้วย Machine Learning

ปัจจุบันมี Startup ใหม่ๆ เกิดขึ้นทุกวันพร้อมกับไฟแห่งความหวัง แต่ใครจะรู้ว่ามี Startup ไม่น้อยที่ไฟนั้นต้องมอดไปก่อนเวลาอันควร ไม่สามารถไปให้ถึงฝั่งฝันได้ วันนี้เราจะมาดูกันค่ะ ว่าจะมีทางไหนบ้างมั้ยที่เราจะสามารถใช้ Machine Learning เข้ามาทำนายความสำเร็จหรือความอยู่รอดของ Startup หน้าใหม่ได้ ก่อนอื่นเรามาดูแหล่งข้อมูลที่เราจะนำมาใช้กันก่อนค่ะ ข้อมูลที่เราจะนำมาใช้นี้เป็นข้อมูลฟรีจากเว็บไซต์ https://angel.co/companies ซึ่งเป็นเว็บไซต์ที่ใช้ข้อมูลต่างๆ เกี่ยวกับบริษัท Startup ในหลายๆ Sectors ณ วันที่เขียนบทความนี้ (13/5/2020) ในเว็บไซต์นี้มีข้อมูลบริษัทอยู่ถึง 556,000+ บริษัทเลยทีเดียว โดยเว็บไซต์จะให้ข้อมูลรายละเอียดต่างๆ ที่จำเป็นเกี่ยวกับบริษัทในฐานะของ Startup เช่น ชื่อบริษัท วันที่เข้าร่วมในเว็บไซต์ ตำแหน่งที่ตั้ง ประเภทธุรกิน ขนาดบริษัท สถานะ และ จำนวนเงินที่บริษัทระดมทุนถึง ณ ปัจจุบัน เนื่องจากมีจำนวน Startup อยู่เป็นจำนวนมาก เราจึงจะทำการสุ่ม Startup ออกมาใช้ในการวิเคราะห์ข้อมูลเพียงบางส่วนเท่านั้น ก่อนที่จะเริ่มต้นการวิเคราะห์ข้อมูลกัน จะขอกล่าวถึงสถานะของบริษัทกันซักเล็กน้อยก่อน เพื่อให้เข้าใจข้อมูลมากขึ้นค่ะ สถานะ (Stage) ของ…

นักลงทุนคนดัง Marcos Lopez de Prado แจก 10 ไอเดียการใช้ ML ในการลงทุน (ฉบับเต็ม)

เมื่อพูดถึงการใช้ Machine Learning ในงานด้านการลงทุนแล้ว คนส่วนใหญ่มักจะนึกถึง “การทำนาย” ราคาข้องหุ้นเป็นหลัก แต่จริงๆ แล้ว Machine Learning ไม่ได้ทำได้เพียงแค่การทำนายค่าราคาเท่านั้นในการลงทุน บทความนี้จะพาไปดู ไอเดียต่างๆ ในการนำ Machine Learning มาใช้ในการด้านการลงทุน โดยการสรุปของคุณ Marcos Lopez de Prado อดีตหัวหน้าทีมนักวิจัย Machine Learning แห่ง AQR Capital และ CIO แห่ง True Positive Technologies (TPT) CIO of True Positive Technologies (TPT) มาดูกันเลยค่ะว่า 10 ทางเลือกในการใช้ Machine Learning ในการลงทุน จะมีอะไรกันบ้าง 1. การทำนายราคา (Price Prediction) ปัญหายอดฮิตของ Machine…

Machine Learning Life Cycle: 7 ขั้นตอนง่ายๆ ในการสร้างโมเดล ML

บทความนี้ เราจะมาพูดถึงวงจรการทำงานของ Machine Learning หรือ “Machine Learning Life Cycle” กันค่ะ ว่ามีขั้นตอนอะไรเข้ามาเกี่ยวข้องบ้าง และ แต่ละขั้นตอนคืออะไร ตั้งแต่การรวบรวมข้อมูล ไปจนถึงการสร้างแอพลิเคชันกันเลย “Your Idea” หรือ สิ่งที่คุณต้องการสร้าง ก่อนอื่นมาเริ่มกันที่ “idea” หรือ แนวคิด ของสิ่งที่คุณต้องการทำกันก่อนเลยค่ะ คุณมีไอเดียจะสร้าง Application ที่ทำนายอารมณ์ของคน เช่น ถ้าทำนายว่าเศร้า ระบบอาจจะเสนอทางเลือกว่า “Call a friend?” (อยากจะโทรหาเพื่อนมั้ย?) หรือ จะ “See a cute pictures” (อยากดูรูปน่ารักๆ มั้ย?) เพื่อทำให้คนๆ นั้นมีอารมณ์ที่ดีขึ้นได้ ถ้าคุณตัดสินใจใช้ ML เข้ามาช่วยในการทำงาน เราจะพาไปดูว่า คุณจะต้องทำขั้นตอนอะไรบ้าง! มาดูกันเลยค่ะ 1. กำหนดขอบเขตของปัญหา (Problem Definition) ในที่นี้เราวิเคราะห์…

รวมขุมทรัพย์การเรียนรู้ (ฟรี) จากนักลงทุนผู้ยิ่งใหญ่ “Ray Dalio”

คุณ Ray Dalio เป็นอีกหนึ่งนักลงทุนที่มีอุปนิสัยชื่นชอบ “การจดบันทึก” มากเป็นพิเศษ ถึงกับเคยกล่าวไว้ว่า เป็นเวลานานกว่า 30 ปี มาแล้วที่ตนเองทำการจดบันทึกการเรียนรู้ และ ประสบการณ์ในเรื่องต่างๆ เอาไว้อย่างละเอียด และ ใช้เป็นแนวทางในการดำเนินชีวิตมาตลอด ซึ่งสามารถเห็นได้จากความละเอียดของหนังสือ “Principles” ที่เจ้าตัวเขียนขึ้นเองเพื่อบอกเล่าหลักการในชีวิตของตน ที่มีส่วนนำพาให้ทั้งชีวิตส่วนตัว หน้าที่การงาน รวมไปถึงบริษัท “Bridgewater” ประสบความสำเร็จอย่างสูง โดยหวังว่าหลักการต่างๆ ที่เจ้าตัวค้นพบ และ ยึดถือเป็นแนวทางมาตลอดนี้จะช่วยให้ผู้อ่านประสบความสำเร็จได้เช่นกัน บทความนี้จึงขอรวบรวม ความรู้และหลักการต่างๆ ที่คุณ Ray Dalio นำเสนอเอาไว้ทั้งผ่านสื่อต่างๆ ไม่ว่าจะเป็น หนังสือ วิดีโอ หรือ บทสัมภาษณ์ต่างๆ สามารถหาฟัง หาอ่านได้ฟรี! เอาไว้ให้ผู้ที่สนใจได้ติดตามกันค่ะ 3-VDOs มาเริ่มกันจากวีดีโอกันก่อนค่ะ คุณ Dalio ไม่ใช่คนที่จัดทำวิดีโอออกมามากมายนัก แต่เมื่อทำออกมาแล้ว แต่ละวีดีโอก็ได้รับความสนใจอย่างล้นหลาม มีจำนวนการเข้าชมมากกว่า 17 ล้านครั้ง (นับถึงปีเดือน มิถุนายน 2562)…

10 ไอเดียใช้ Machine Learning ในงาน Finance พร้อมแนะนำ paper ไปอ่านกันให้จุใจรับปีใหม่ (part 2)

เมื่อพูดถึงการใช้ Machine Learning ในงานด้านการลงทุนแล้ว คนส่วนใหญ่มักจะนึกถึง “การทำนาย” ราคาข้องหุ้นเป็นหลัก แต่จริงๆ แล้ว Machine Learning ไม่ได้ทำได้เพียงแค่การทำนายค่าราคาเท่านั้นในการลงทุน บทความนี้จะพาไปดู ไอเดียต่างๆ ในการนำ Machine Learning มาใช้ในการด้านการลงทุน โดยการสรุปของคุณ Marcos Lopez de Prado อดีตหัวหน้าทีมนักวิจัย Machine Learning แห่ง AQR Capital และ CIO แห่ง True Positive Technologies (TPT) CIO of True Positive Technologies (TPT) มาดูกันเลยค่ะว่า 10 ทางเลือกในการใช้ Machine Learning ในการลงทุน จะมีอะไรกันบ้าง บทความที่แล้ว เราได้เขียนเกี่ยวกับไอเดียการใช้ Machine Learning ใน 3…

10 ไอเดียใช้ Machine Learning ในงาน Finance พร้อมแนะนำ paper ไปอ่านกันให้จุใจรับปีใหม่ (part 1)

เมื่อพูดถึงการใช้ Machine Learning ในงานด้านการลงทุนแล้ว คนส่วนใหญ่มักจะนึกถึง “การทำนาย” ราคาข้องหุ้นเป็นหลัก แต่จริงๆ แล้ว Machine Learning ไม่ได้ทำได้เพียงแค่การทำนายค่าราคาเท่านั้นในการลงทุน บทความนี้จะพาไปดู ไอเดียต่างๆ ในการนำ Machine Learning มาใช้ในการด้านการลงทุน โดยการสรุปของคุณ Marcos Lopez de Prado อดีตหัวหน้าทีมนักวิจัย Machine Learning แห่ง AQR Capital และ CIO แห่ง True Positive Technologies (TPT) CIO of True Positive Technologies (TPT) มาดูกันเลยค่ะว่า 10 ทางเลือกในการใช้ Machine Learning ในการลงทุน จะมีอะไรกันบ้าง 1. Price Prediction (การทำนายราคา) ปัญหายอดฮิตของ Machine…

Value-at-Risk Part 2: Cornish-Fisher Expansion – Deal with Fat-tailed

วันนี้เรามาต่อกันที่เรื่อง Value at Risk แบบที่ 3 ที่เรียกว่า “Semi Parameter Approach” กันครับ ผู้อ่านท่านใดสนใจบทความเรื่อง Value-at_Risk: part 1 ซึ่งพูดถึง VaR ใน 2 แบบแรก สามารถตามอ่านได้ที่ลิงก์ด้านล่างครับ ประเมินความเสี่ยงด้วย Value at Risk (VaR) แต่ละแบบมีข้อดีข้อเสียอย่างไร ปัญหาของสองแบบแรก ปัญหาของการประเมินสองแบบแรกที่กล่าวถึงในบทความที่ผ่านมา ประเมินความเสี่ยงด้วย Value at Risk (VaR) ก็คือ แบบ Historical มีปัญหาเรื่องการใช้ดาต้าอย่างเดียวในการอธิบายมันจึงไม่มีการตั้งสมมุติฐานใดๆ การประเมินสามารถกระโดดได้มากช่วงปลายการแจกแจง แบบ Parametric เราจะต้องมีการสร้างโมเดล โดยตั้งสมมุติฐานว่าดาต้ามีการแจกแจงแบบใดซักแบบหนึง สมมุติว่าเราใช้ Gaussian distribution มันก็จะมีการใช้ Parameter ในการประเมิน โดยคิดว่าข้อมูลที่เราประเมินเป็น Gaussian ตลอด ถ้าเราตั้งไว้ว่าเป็น Student distribution…

Deep Learning กับการช่วยอนุรักษ์วาฬ ใน “Saving Whale Project”

บทความนี้ เราจะมาทำความรู้กับอีกหนึ่งโครงการที่มีการนำ Machine Learning มาใช้เพื่อแก้ปัญหาที่เกิดขึั้นจริง เพื่อแก้ปัญหาการสูญพันธ์ของปลาวาฬหายากกัน ก่อนอื่นเรามาดูจุดเริ่มต้นของปัญหากันก่อนค่ะ ปัญหา จะมีซักกี่คนที่รู้ว่า สัตว์เลี้ยงลูกด้วยนมขนาดมหึมาอย่าง “วาฬ” หรือ ที่นิยมเรียกกันติดปากว่า “ปลาวาฬ” ซึ่งจริงๆ แล้ว ไม่ใช่ปลา เพียงแค่อาศัยอยู่ในน้ำเท่านั้น! เป็นสิ่งมีชีวิตที่ “ใกล้” จะสูญพันธ์ โดยเฉพาะวาฬสายพันธ์ที่หายากต่างๆ เช่น Narwhal, North Atlantic Right Whale, Sei Whale มาดูตัวอย่างหน้าตาวาฬที่ได้รับการจัดว่ากำลังเสี่ยงต่อการสูญพันธุ์ โดย WWF (World Wide Fund for Nature) กันก่อนค่ะ ดังนั้น จึงต้องมีกลุ่มนักอนุรักษ์ที่คอยสอดส่องดูแลเจ้าวาฬเหล่านี้อย่างใกล้ชิด แต่ปัญหามันอยู่ที่ว่า เจ้าสัตว์โลกตัวมหึมาเหล่านี้ อาศัยอยู่ในทะเล ถึงแม้จะต้องขึ้นมาหายใจที่ผิวน้ำ แต่ก็ไม่ได้โผล่ขึ้นมาให้เราเห็นทั้งตัว และ ไม่ได้โผล่ขึ้นมาบ่อยๆ แล้วนักอนุรักษ์จะรู้ได้ยังไงล่ะ ว่าตัวไหน เป็นตัวไหน และ จำนวนของพวกมันเพิ่มขึ้น หรือ ลดลงอย่างไร???…