มาต่อกันที่สมมุติฐาน (Hypythesis) กันอีกซักตัวครับ โดยสมมุติฐานนี้ชื่อ “สมมุติฐานการเคลื่อนไหวแบบสุ่ม” หรือ “Random Walk Hypythesis (RWH)” นั่นเอง ซึ่งมีความคล้ายกับ Efficient Market Hypothesis (EMH) อยู่แต่ก็ไม่ได้เหมือนกันเสียทีเดียว โดยจะมีการสมมุติฐานว่าการเคลื่อนไหวของหลักทรัพย์เป็นแบบสุ่ม(Random ) และถ้าการเคลื่อนไหวของหลักทรัพย์เป็นแบบสุ่มก็เป็นไปไม่ได้ที่เราจะทำนายการเคลื่อนไหวของมันสุ่มเหมือนการออกรางวัลฉลากกินแบ่งหรือลูกเต๋าที่ไม่ว่าเราจะ่สร้างโมเดลอย่างไรก้ไม่อาจทำนายได้(ในกรณีที่ลูกเต๋า/เครื่องจับรางวัลไม่มี Bias) ความเป็นมา เราจะมาดูฟอร์มตั้งต้นของมันกันซัก 2 แบบก่อนครับ Simplest Random Walk คอนเซปก็ง่ายๆครับ ถ้าเปรียบเป็นราคาหลักทรัพย์อย่างหุ้น มันไม่ได้มีอะไรมากไปกว่า ราคาหุ้น ณ วันนี้เท่ากับราคาหุ้นของเมื่อวาน บวกด้วย ราคาที่เปลี่ยนแปลงไป e_t โดยฟอร์มที่เรียบงาที่สุดก็จะลดเหลือแค่ หุ้นขึ้นกับ+1 หุ้นตก-1 เท่านั้น(ตัดวันที่ราคาไม่เคลื่อนไหวออกไป) ก็ตามทฎษฎีแหละครับ ราคาวันต่อมามันก็แค่สุ่มๆมาจากความน่าจะเป็นทั้งสองนี้เท่านั้น อาจจะมีคนคิดว่าถ้ามันสุ่มแบบมีโอกาสเท่ากันที่หุ้นจะไม่เคลื่อนไหวไปไหนเลยสิ่ ก็คงจะอยู่แถวๆราคาเริ่มต้น เดี๋ยวเราลองมาซิมมูเลชั่นดูว่าจะเป็นแบบนั้นหรือเปล่า โดยในจะให้ราคาหุ้นเริ่มต้นที่ 100 และทำการสุ่มเป็นเวลา 1 ปี (252 วัน ตามตลาดอเมริกา) ตั๊ก…
Category: Financial Theory
ผลกระทบของการไม่ Rebalance พร้อม (Python code)
“การลงทุนที่ดีที่การลงทุนที่กำไรมากที่สุด” นั่นมันสำหรับมือใหม่เค้าว่ากันครับ การลงทุนที่ได้กำไรมากๆ อาจจะเป็นการลงทุนที่ห่วยแตกก็ได้ และเราไปสนใจกับแค่ช่วงเวลาหนึ่งๆ (one point in time) แล้วพบว่าระบบลงทุนของเรานี่มันดี เพราะทำกำไรได้มาก แต่จริงๆ อาจจจะฟลุ๊กก็ได้ ในการลงทุนที่ดี สิ่งที่ต้องสนใจไม่แพ้ผลกำไร ก็คือ “ความเสี่ยง” ครับ portfolio ที่ดีจะต้องให้น้ำหนักกับเรื่องนี้ให้มาก วันนี้เราเลยจะมาดูเรื่องผลกระทบของการ “Rebalance Portfolio” กันครับ โดยตัวอย่างที่ผมเลือกมาเพื่อให้เราเห็นว่า การลงทุนที่ดีที่สุดไม่จำเป็นต้องทำกำไรมากที่สุด และทำไมต้อง Rebalanced Portfolio กันครับ ก่อนอื่นดึง library ที่ต้องใช้มาก่อน ก็ตัวเดิมๆทั้งนั้น ดึงข้อมูลหุ้น สองตัว Google และ 3M อันนี้เราจะเลือกสุ่มๆนะครับ และเพื่อความเรียบง่าย ผมจะใช้แค่หุ้น 2 ตัวในพอร์ตเป็นตัวอย่าง เราจะสมมุติว่าการถือหุ้นสองตัวนี้จะแบบ equal weight จะดีกับ risk profile ก็แล้วกันครับ หา return ของหุ้นทั้ง 2…
รายละเอียดคอร์ส AI for Investment: from AI to Fundamental Investing
คอร์สนี้เป็นคอร์ส “ประยุกต์ใช้ศาสตร์ Artificial Intelligence ในการลงทุน” ภายในคอร์ส เราจะเขียนโปรแกรมที่สามารถ “เลือกหุ้น” ที่จะลงทุนในระยาว ตั้งแต่ 1 ปีขึ้นไป โดยการใช้เทคนิค Machine learning เพื่อคัดแยกหุ้นที่น่าลงทุนมาให้เรา เป้าหมายของคอร์ส สร้างโปรเจคเพื่อ“คัดแยกหุ้นที่น่าสนใจด้วย Machine Learning” เราจะพาทุกท่านมาสร้าง ตะแกรงร่อนหุ้น เพื่อเฟ้นหาหุ้นที่น่าสนใจท่ามกลางหุ้นนับพันตัว!!! รายละเอียดหัวข้อต่างๆ ที่เราจะได้เรียนรู้จากการเรียนคอร์สนี้ เรียนรู้วิธีการหาข้อมูลหุ้น ข้อมูลงบการเงิน ประเภทข้อมูล ข้อมูลสูงระดับล้านแถว เรียนรู้วิธีการจัดการข้อมูลงบการเงิน และการสร้าง Financial Feature ที่ส่งผลต่อการทำนายด้วย โมเดล Machine Learning การทำความสะอาดข้อมูล (Data Cleaning) เพื่อเตรียมพร้อมสำหรับการสร้างโมเดล AI ความรู้เบื้องต้นเกี่ยวกับ Machine Learning เช่น การแบ่งข้อมูล Train-Test Set ปัญหา Overfittingการหาจุดสมดุลของโมเดล (Bias Variance Tradeoff) Machine…
Backtesting Part2: Adding Stoploss
หลังจากเราทำ backtest แบบง่ายๆไปกันแล้ว เรามาลองเพิ่มรายละเอียดให้กับมันโดยใช้การหยุดการขาดทุน หรือ Stoploss กันดีกว่าครับ เราจะใช้ Technical Analysis indicator ซักตัวหนึงมาใช้เพื่อรักษาระดับกำไรของเราไว้ ในบทความนี้ก็ยังคงพื้นๆอยู่ครับ แต่หลังจากโพสนี้ ยังมีรายละเอียดเกี่ยวการ backtest อีกหลายอย่าง เช่น ความสมจริงของราคาซื้อ-ขาย การเก็บ log วันที่ซื้อ-ขาย หรือปัญหาทาง assumption ทางคณิตศาสตร์ของการ backtest (รวม vectorize ด้วย) ที่เราจะมาพูดคุยและค่อยๆประกอบมันกันครับ เราจะใช้อินดิเคเตอร์ชื่อดังอย่าง Average True Range (ATR) มาช่วยในการรักษาระดับกำไรของเรา อินดิเคเตอร์ตัวนี้ถูกคิดค้นโดยคุณ J. Welles Wilder Jr. ที่เปิดตัวในหนังสือในตำนานทางเทคนิคคอลชื่อ New Concepts in Technical Trading Systems คุณคนนี้เค้ายังคิดค้นเทคนิคอลอินดิเคเตอร์ที่เรารู้จักกันดี และยังใช้กันอยู่ในทุกวันนี้อีกหลายตัวด้วยกัน เช่น Relative strength index(RSI), Average…
Backtesting Part1: อย่างง่าย แบบ Non-vectorization ฉบับจับมือทำ [แจกโค้ด]
อย่างที่เรารู้กันมาว่าการเขียนโปรแกรม Python ให้ดีคือการหลีกเลี่ยงการใช้ foor loop ที่อาจจะส่งผลให้โปรแกรมทำงานได้ช้าลง เราจะนำไป Optimization ก็อาจจะทำให้ใช้เวลามากเกินจำเป็น แต่บางครั้งก็มีความจำเป็นที่จะต้องทำแบบ Non-Vectorization บ้างเหมือนกัน บทความนี้ขอชวนทุกท่านมาทดลองทำ Backtesting ด้วยตัวเองแบบง่ายๆ กันครับ โดยบทความชุดนี้จะเป็นบทความชุด ในบทความแรกนี้จะไม่มีรายละเอียดมากนัก แต่จะทำเป็น Building blog ให้เราค่อยๆเพิ่มเติมรายละเอียดให้กับการเขียน Backtest เพิ่มเติมต่อไปครับ ทำเองใช้เอง ไม่ต้องง้อใคร เพื่อทดสอบสมมุติฐานของเราในเบื้องต้น มือใหม่ก็เข้าใจได้ แถมแจกโค้ดไปรันกันเองให้หนำใจไปเลย ใครที่เพิ่งเริ่มต้นศึกษา ยิ่งได้ทดลองทำด้วยตัวเอง ก็จะช่วยให้เข้าใจหลักการของการทำ Backtest มากขึ้นไปอีกครับ เกริ่นนำกันมาพาพอสมควรแล้ว อย่าเสียเวลาเลยครับ เรามาเริ่มต้นทำกันดีกว่า กับ Backtesting ฉบับจับมือทำ Step 1: Import Libraries ที่จำเป็น ก่อนอื่นเรามาเริ่มต้นด้วยการ Import ไลบรารี่ที่จำเป็นกันก่อน ในที่นี้เราจะ 4 ไลบรารี่ด้วยกัน ดังนี้ Step 2: ดึงข้อมูลหุ้นจาก…
กลยุทธ์ Day of Week ของคุณ Larry R. Williams ทำงานได้จริงไหม
สองสามวันก่อนผู้เขียนได้ อ่านหนังสือ “Long-term secrets to short-term trading” (มีเวอร์ชั่นแปลไทยโดยใช้ชื่อว่า กลยุทธ์เก็งกำไรเทรดระยะสั้น) ของคุณ Larry R. Williams ก็เลยอยากทดลองใช้กลยุทธ์ในการวิเคราะห์ข้อมูลหุ้นตามคุณ Larry ด้วยภาษา Python ดูซะหน่อย จึงถือโอกาสหยิบยกการทดลองนี้มาให้เพื่อนๆ ได้ดูกัน ถือเป็นการฝึกมือภาษา Python และทำความรู้จักกับข้อมูลหุ้นให้มากขึ้นกันไปในตัวด้วยค่ะ สมมุติฐานเริ่มต้น คุณ Larry ได้ตั้งสมมุติฐานของกลยุทธ์นี้ไว้ว่า “ราคาของหลักทรัพย์ในแต่ละวันของสัปดาห์มีลักษณะนิสัย (Characteristic) บางวันมีการปรับตัวขึ้นของราคามากกว่าวันอื่นๆ ในขณะที่บางวันที่การปรับตัวของราคาลดลงมากกว่าวันอื่นๆ อย่างมีนัยยะสำคัญ เช่น หุ้นอย่าง Google อาจจะมีลักษณะของการมีแรงซื้อเข้ามามากใน วันเริ่มต้น ของสัปดาห์ และ มีแรงขายมากใน วันสุดท้าย ของสัปดาห์ ถ้าหุ้นเหล่านั้นมีลักษณะนิสัยแบบที่ว่าจริง เราก็น่าจะสามารถนำข้อมูลนี้มาใช้ประโยชน์ในการสร้างกลยุทธ์การลงทุนได้” ผู้เขียนจึงขออาสา พามาทดลองกลยุทธ์ที่ว่านี้ไปด้วยกันค่ะ บทความนี้ผู้เขียนจะขอใช้หุ้นใน Dow Jones Industrial Average (DJIA) ในการทดลองนะคะ เราจะนำหุ้นเหล่านี้วิเคราะห์ลักษณะเฉพาะ (Characteristic)…
กลยุทธ์ง่ายๆ อย่างการเลือกหุ้นผู้ชนะ ทำกำไรได้จริงหรือ [แจก Code Portfolio Selection with Python]
สวัสดีครับ ไม่ได้เขียน blog ซะนาน วันนี้มีโอกาสได้กลับมาอัพเดต blog กันซะหน่อย วันนี้เรามาวอร์มอัพ Python กับการ backtest แบบง่ายๆกันดีกว่าครับ สมมุติว่าเราต้องการซื้อหุ้นด้วยเงื่อนไขสุดเบสิค คือ ถ้าเราซื้อหุ้นเฉพาะที่ “เป็นหุ้นผู้ชนะ” ในช่วงนี้ผ่านมาแล้วถือไว้ซักระยะหนึ่ง เราจะสามารถทำกำไรได้หรือไม่? ลองมาขยายความกันหน่อยดีกว่า ว่าเงื่อนไขนี้เป็นอย่างไร ทำการเรียงหุ้นใน pool (กลุ่มของหุ้นที่เราเลือกมา) ทั้งหมด ที่มีผลงานดีที่สุดในช่วงเวลาที่ p โดยที่ p อาจจะเป็น 1 สัปดาห์ 1 เดือน 3 เดือน ฯลฯ ผ่านมา เลือกหุ้นที่ทำผลงานได้ดีที่สุดมา n ตัว แล้วถือไว้ใน portfolio ของเราเป็นช่วงเวลา อีก q หนึง (หรือจะมากกว่าน้อยกว่าก็แล้วแต่เราจะดีไซน์) คิดผลกำไร / ขาดทุนของช่วงเวลาที่ถือหุ้นเหล่านั้นไว้ใน portfolio (ช่วงเวลา q) ให้เราเริ่มกระบวนการเดิมซ้ำคือการไปเรียงลำดับผลงานของหุ้นใน portfolio…
Alternative bars อีกทางเลือกของการวิเคราะห์ข้อมูลเพื่อการลงทุน
เคยคิดกันมั้ย ว่าข้อมูลหุ้นที่เรานำมาวิเคราะห์กันในทุกๆ วันนี้ ข้อมูลที่มีหน้าตาที่คุ้นเคย อย่างราคาของวันนั้นๆ OHLC (Open-High-Low-Close) และ Volume ที่เกิดขึ้นในวันๆ หนึ่ง มันเหมาะสมเพียงใด ที่เราจะนำมาใช้ในการ วัดความเป็นความตาย (นี่ก็เวอร์ไป) ….. ในการตัดสินใจว่า จะลงทุนในหุ้นตัวใด เมื่อไหร่ เป็นจำนวนเท่าใด เคยนั่งคิดกันมั้ยว่า เจ้าข้อมูลตัวนี้มันสมเหตุสมผลหรือไม่ หรือ มีข้อมูลอื่นๆ ที่อาจจะนำมาลองใช้ได้หรือไม่ วันนี้ เราเลยนำบทความเกี่ยวกับ “ข้อมูลหุ้นทางเลือก” หรือ “Aternative bars” มาเล่าสู่กันฟังค่ะ โดยบทความนี้เราได้เอามาจาก คุณ Harkishan Singh Baniya link บทความต้นฉบับ ที่นี่ บทความเก่าของเราเองที่เคยเขียนในเรื่องนี้ สามารถอ่านได้ที่นี่ อะไรคือ Bars หรือ Candles บาร์ หรือ ชาร์ทแบบแท่งเทียน น่าจะเป็นสองชื่อที่เป็นที่คุ้นหูนักลงทุนกันเป็นอย่างดี เนื่องจากเป็นข้อมูลพื้นฐานที่สามารถเข้าถึง แล้ว เข้าใจได้ง่าย ซึ่งข้อมูลที่นิยมใช้กันนี้ มักจะเป็นข้อมูลที่ถูกสร้างขึ้นโดยจังหวะของ…
กรองสัญญาณเทรดง่ายๆ ด้วย K-mean clustering
สวัสดีครับ ห่างหายจากการอัพบล๊อคกันไปนานมาก เนื่องจากติดภารกิจหลายเดือน วันนี้จะกลับมาเขียนอัพบล็อคตามปรกติแล้วครับ ขอถือโอกาสมาปัดฝุ่นกันด้วยไอเดียง่ายๆ ที่ใช้ในการกรองสัญญาณเทรดด้วย Machine Learning กันก่อนก็แล้วกันครับ ข้อมูล ในที่นี้เราจะใช้ ขอมูลหุ้น MSFT(microsoft corporation) เป็นตัวอย่างในการทดลองนี้นะครับ โดยใช้ข้อมูลในการทดลองตั้งแค่ปี 2016 จนถึงปี 2018 เริ่มทำงาน โดยแรกเริ่ม เราจะใช้กลยุทธ์อย่าง Trend Following แบบธรรมดาๆ คือ ใช้ Feature หรือ indicator แค่ Simple Moving Average (SMA) 2 เส้น เท่านั้น SMA1 เส้นเร็ว xx วัน โดยผมจะปรับให้สั้นเพื่อให้เกิด noise SMA2 เส้นช้า yy วัน โดยผมจะปรับให้สั้นเพื่อให้เกิด noiseเช่นกัน จากนั้น ก็ประยุกต์ใช้ไอเดียง่ายๆ ที่ทราบกันอยู่แล้วคือ ให้ SMA1…
นักลงทุนคนดัง Marcos Lopez de Prado แจก 10 ไอเดียการใช้ ML ในการลงทุน (ฉบับเต็ม)
เมื่อพูดถึงการใช้ Machine Learning ในงานด้านการลงทุนแล้ว คนส่วนใหญ่มักจะนึกถึง “การทำนาย” ราคาข้องหุ้นเป็นหลัก แต่จริงๆ แล้ว Machine Learning ไม่ได้ทำได้เพียงแค่การทำนายค่าราคาเท่านั้นในการลงทุน บทความนี้จะพาไปดู ไอเดียต่างๆ ในการนำ Machine Learning มาใช้ในการด้านการลงทุน โดยการสรุปของคุณ Marcos Lopez de Prado อดีตหัวหน้าทีมนักวิจัย Machine Learning แห่ง AQR Capital และ CIO แห่ง True Positive Technologies (TPT) CIO of True Positive Technologies (TPT) มาดูกันเลยค่ะว่า 10 ทางเลือกในการใช้ Machine Learning ในการลงทุน จะมีอะไรกันบ้าง 1. การทำนายราคา (Price Prediction) ปัญหายอดฮิตของ Machine…
ปรากฏการณ์ 26 กุมภาพันธ์ 2020 หุ้นไทยตก 72 จุดในวันเดียว!!! ใช้ Value-at-Risk ประเมินกันดีกว่า (แจก code Python)
วันที่ 26 ก.พ. 2020 ตลาดหลักทรัพย์แห่งประเทศไทยเกิดอาการ “เทกระจาด” หล่นลงวันเดียว ถึง 72.69 จุดนับเป็น นับเป็นหล่นลงวันเดียวถึง 5.05% นับเป็นความเสี่ยงอย่างหนึ่งที่นักลงทุนต้องแบกรับ แต่โชคดีที่เราที่มีวิธีการประเมินความเสี่ยงในการลงทุนเพื่อวิเคราะห์ความเสี่ยงล่วงหน้าทำให้เราสามารถวางแผนรับมือกับความเสี่ยงนี้ได้อยู่แล้ว คือ การใช้ทฎษี Value at Risk เข้ามาช่วย ดังที่เราได้เคยนำเสนอไปแล้วในบทความสองพาร์ทแรกซึ่งหาอ่านได้ที่ Value at Risk (VaR) Part 1: VaR แต่ละแบบมีข้อดีข้อเสียอย่างไร Value-at-Risk Part 2: Cornish-Fisher Expansion – Deal with Fat-tailed ในบทความนี้เราจะนำตัวอย่าง index ตลาดหลักทรัพย์ไทยมาวิเคราะห์ด้วย value at risk ทั้งสองแบบมาวิเคราะห์ให้ดูว่าเราสามารถคาดการณ์ความเสี่ยงในครั้งนี้ล่วงหน้าได้อย่างไร พร้อมทั้งแจกโค้ด python ไปให้เพื่อนๆลองทดลองดูได้อีกด้วย ก่อนอื่นเราจะอธิบายขั้นตอนคร่าวๆก่อนว่าแต่ละโค้ดแต่ล่ะส่วนที่สำคัญทำงานอย่างไรเพื่ออธิบายหลักการทำงานก่อน จากนั้นเราจะนำโค้ดทั้งหมดมาแจกในตอนท้ายของบทความ อธิบายส่วนสำคัญของโค้ด Python เริ่มต้นเราต้อง Import library…
รวมขุมทรัพย์การเรียนรู้ (ฟรี) จากนักลงทุนผู้ยิ่งใหญ่ “Ray Dalio”
คุณ Ray Dalio เป็นอีกหนึ่งนักลงทุนที่มีอุปนิสัยชื่นชอบ “การจดบันทึก” มากเป็นพิเศษ ถึงกับเคยกล่าวไว้ว่า เป็นเวลานานกว่า 30 ปี มาแล้วที่ตนเองทำการจดบันทึกการเรียนรู้ และ ประสบการณ์ในเรื่องต่างๆ เอาไว้อย่างละเอียด และ ใช้เป็นแนวทางในการดำเนินชีวิตมาตลอด ซึ่งสามารถเห็นได้จากความละเอียดของหนังสือ “Principles” ที่เจ้าตัวเขียนขึ้นเองเพื่อบอกเล่าหลักการในชีวิตของตน ที่มีส่วนนำพาให้ทั้งชีวิตส่วนตัว หน้าที่การงาน รวมไปถึงบริษัท “Bridgewater” ประสบความสำเร็จอย่างสูง โดยหวังว่าหลักการต่างๆ ที่เจ้าตัวค้นพบ และ ยึดถือเป็นแนวทางมาตลอดนี้จะช่วยให้ผู้อ่านประสบความสำเร็จได้เช่นกัน บทความนี้จึงขอรวบรวม ความรู้และหลักการต่างๆ ที่คุณ Ray Dalio นำเสนอเอาไว้ทั้งผ่านสื่อต่างๆ ไม่ว่าจะเป็น หนังสือ วิดีโอ หรือ บทสัมภาษณ์ต่างๆ สามารถหาฟัง หาอ่านได้ฟรี! เอาไว้ให้ผู้ที่สนใจได้ติดตามกันค่ะ 3-VDOs มาเริ่มกันจากวีดีโอกันก่อนค่ะ คุณ Dalio ไม่ใช่คนที่จัดทำวิดีโอออกมามากมายนัก แต่เมื่อทำออกมาแล้ว แต่ละวีดีโอก็ได้รับความสนใจอย่างล้นหลาม มีจำนวนการเข้าชมมากกว่า 17 ล้านครั้ง (นับถึงปีเดือน มิถุนายน 2562)…