ปรากฏการณ์ 26 กุมภาพันธ์ 2020 หุ้นไทยตก 72 จุดในวันเดียว!!! ใช้ Value-at-Risk ประเมินกันดีกว่า (แจก code Python)

วันที่ 26 ก.พ. 2020 ตลาดหลักทรัพย์แห่งประเทศไทยเกิดอาการ “เทกระจาด” หล่นลงวันเดียว ถึง 72.69 จุดนับเป็น นับเป็นหล่นลงวันเดียวถึง 5.05% นับเป็นความเสี่ยงอย่างหนึ่งที่นักลงทุนต้องแบกรับ แต่โชคดีที่เราที่มีวิธีการประเมินความเสี่ยงในการลงทุนเพื่อวิเคราะห์ความเสี่ยงล่วงหน้าทำให้เราสามารถวางแผนรับมือกับความเสี่ยงนี้ได้อยู่แล้ว คือ การใช้ทฎษี Value at Risk เข้ามาช่วย ดังที่เราได้เคยนำเสนอไปแล้วในบทความสองพาร์ทแรกซึ่งหาอ่านได้ที่ Value at Risk (VaR) Part 1: VaR แต่ละแบบมีข้อดีข้อเสียอย่างไร Value-at-Risk Part 2: Cornish-Fisher Expansion – Deal with Fat-tailed ในบทความนี้เราจะนำตัวอย่าง index ตลาดหลักทรัพย์ไทยมาวิเคราะห์ด้วย value at risk ทั้งสองแบบมาวิเคราะห์ให้ดูว่าเราสามารถคาดการณ์ความเสี่ยงในครั้งนี้ล่วงหน้าได้อย่างไร พร้อมทั้งแจกโค้ด python ไปให้เพื่อนๆลองทดลองดูได้อีกด้วย ก่อนอื่นเราจะอธิบายขั้นตอนคร่าวๆก่อนว่าแต่ละโค้ดแต่ล่ะส่วนที่สำคัญทำงานอย่างไรเพื่ออธิบายหลักการทำงานก่อน จากนั้นเราจะนำโค้ดทั้งหมดมาแจกในตอนท้ายของบทความ อธิบายส่วนสำคัญของโค้ด Python เริ่มต้นเราต้อง Import library…

รวมขุมทรัพย์การเรียนรู้ (ฟรี) จากนักลงทุนผู้ยิ่งใหญ่ “Ray Dalio”

คุณ Ray Dalio เป็นอีกหนึ่งนักลงทุนที่มีอุปนิสัยชื่นชอบ “การจดบันทึก” มากเป็นพิเศษ ถึงกับเคยกล่าวไว้ว่า เป็นเวลานานกว่า 30 ปี มาแล้วที่ตนเองทำการจดบันทึกการเรียนรู้ และ ประสบการณ์ในเรื่องต่างๆ เอาไว้อย่างละเอียด และ ใช้เป็นแนวทางในการดำเนินชีวิตมาตลอด ซึ่งสามารถเห็นได้จากความละเอียดของหนังสือ “Principles” ที่เจ้าตัวเขียนขึ้นเองเพื่อบอกเล่าหลักการในชีวิตของตน ที่มีส่วนนำพาให้ทั้งชีวิตส่วนตัว หน้าที่การงาน รวมไปถึงบริษัท “Bridgewater” ประสบความสำเร็จอย่างสูง โดยหวังว่าหลักการต่างๆ ที่เจ้าตัวค้นพบ และ ยึดถือเป็นแนวทางมาตลอดนี้จะช่วยให้ผู้อ่านประสบความสำเร็จได้เช่นกัน บทความนี้จึงขอรวบรวม ความรู้และหลักการต่างๆ ที่คุณ Ray Dalio นำเสนอเอาไว้ทั้งผ่านสื่อต่างๆ ไม่ว่าจะเป็น หนังสือ วิดีโอ หรือ บทสัมภาษณ์ต่างๆ สามารถหาฟัง หาอ่านได้ฟรี! เอาไว้ให้ผู้ที่สนใจได้ติดตามกันค่ะ 3-VDOs มาเริ่มกันจากวีดีโอกันก่อนค่ะ คุณ Dalio ไม่ใช่คนที่จัดทำวิดีโอออกมามากมายนัก แต่เมื่อทำออกมาแล้ว แต่ละวีดีโอก็ได้รับความสนใจอย่างล้นหลาม มีจำนวนการเข้าชมมากกว่า 17 ล้านครั้ง (นับถึงปีเดือน มิถุนายน 2562)…

10 ไอเดียใช้ Machine Learning ในงาน Finance พร้อมแนะนำ paper ไปอ่านกันให้จุใจรับปีใหม่ (part 2)

เมื่อพูดถึงการใช้ Machine Learning ในงานด้านการลงทุนแล้ว คนส่วนใหญ่มักจะนึกถึง “การทำนาย” ราคาข้องหุ้นเป็นหลัก แต่จริงๆ แล้ว Machine Learning ไม่ได้ทำได้เพียงแค่การทำนายค่าราคาเท่านั้นในการลงทุน บทความนี้จะพาไปดู ไอเดียต่างๆ ในการนำ Machine Learning มาใช้ในการด้านการลงทุน โดยการสรุปของคุณ Marcos Lopez de Prado อดีตหัวหน้าทีมนักวิจัย Machine Learning แห่ง AQR Capital และ CIO แห่ง True Positive Technologies (TPT) CIO of True Positive Technologies (TPT) มาดูกันเลยค่ะว่า 10 ทางเลือกในการใช้ Machine Learning ในการลงทุน จะมีอะไรกันบ้าง บทความที่แล้ว เราได้เขียนเกี่ยวกับไอเดียการใช้ Machine Learning ใน 3…

10 ไอเดียใช้ Machine Learning ในงาน Finance พร้อมแนะนำ paper ไปอ่านกันให้จุใจรับปีใหม่ (part 1)

เมื่อพูดถึงการใช้ Machine Learning ในงานด้านการลงทุนแล้ว คนส่วนใหญ่มักจะนึกถึง “การทำนาย” ราคาข้องหุ้นเป็นหลัก แต่จริงๆ แล้ว Machine Learning ไม่ได้ทำได้เพียงแค่การทำนายค่าราคาเท่านั้นในการลงทุน บทความนี้จะพาไปดู ไอเดียต่างๆ ในการนำ Machine Learning มาใช้ในการด้านการลงทุน โดยการสรุปของคุณ Marcos Lopez de Prado อดีตหัวหน้าทีมนักวิจัย Machine Learning แห่ง AQR Capital และ CIO แห่ง True Positive Technologies (TPT) CIO of True Positive Technologies (TPT) มาดูกันเลยค่ะว่า 10 ทางเลือกในการใช้ Machine Learning ในการลงทุน จะมีอะไรกันบ้าง 1. Price Prediction (การทำนายราคา) ปัญหายอดฮิตของ Machine…

Value-at-Risk Part 2: Cornish-Fisher Expansion – Deal with Fat-tailed

วันนี้เรามาต่อกันที่เรื่อง Value at Risk แบบที่ 3 ที่เรียกว่า “Semi Parameter Approach” กันครับ ผู้อ่านท่านใดสนใจบทความเรื่อง Value-at_Risk: part 1 ซึ่งพูดถึง VaR ใน 2 แบบแรก สามารถตามอ่านได้ที่ลิงก์ด้านล่างครับ ประเมินความเสี่ยงด้วย Value at Risk (VaR) แต่ละแบบมีข้อดีข้อเสียอย่างไร ปัญหาของสองแบบแรก ปัญหาของการประเมินสองแบบแรกที่กล่าวถึงในบทความที่ผ่านมา ประเมินความเสี่ยงด้วย Value at Risk (VaR) ก็คือ แบบ Historical มีปัญหาเรื่องการใช้ดาต้าอย่างเดียวในการอธิบายมันจึงไม่มีการตั้งสมมุติฐานใดๆ การประเมินสามารถกระโดดได้มากช่วงปลายการแจกแจง แบบ Parametric เราจะต้องมีการสร้างโมเดล โดยตั้งสมมุติฐานว่าดาต้ามีการแจกแจงแบบใดซักแบบหนึง สมมุติว่าเราใช้ Gaussian distribution มันก็จะมีการใช้ Parameter ในการประเมิน โดยคิดว่าข้อมูลที่เราประเมินเป็น Gaussian ตลอด ถ้าเราตั้งไว้ว่าเป็น Student distribution…

ประเมินความเสี่ยงด้วย Value at Risk (VaR) Part 1: VaR แต่ละแบบมีข้อดีข้อเสียอย่างไร

ความจริงเรื่องนี้ผมเคยเขียนไปเมื่อ 2-3 ปีก่อนแล้ววันนี้มีโอกาสผมขอนำกลับมาเขียนให้เป็นระบบและครอบคลุมขึ้นนะครับ Value at Risk (VaR) คืออะไร VaR คือ “โมเดลที่ใช้ในการประเมินความเสี่ยง” ของพอร์ตฟอลิโอวิธีหนึ่ง ที่ถูกนำมาใช้เพื่อตอบคำถามประเภทที่ ในช่วงเวลาหนึ่งๆ พอร์ตฟอลิโอของเราจะมีโอกาสเสียเงินได้มากเท่าไหร่ ที่ระดับความเชื่อมั่น (Confident Level) แค่ไหน ตัวอย่าง เช่น “จากข้อมูลรายเดือนที่เราของหุ้น ABC เป็นเวลา 30 ปี เรามีความมั่นใจ 95% ว่าถ้าเราถือหุ้นตัวนี้ไว้ในพอร์ตฟอลิโอของเรา หุ้นตัวนี้จะไม่ลดลงเกินกว่า 4% ในช่วงเวลา 1 เดือน” พูดง่ายๆคือ “มีโอกาสแค่ 5% ที่หุ้น ABC จะลดลงเกินกว่า 4% ในช่วง 1 เดือน” นั่นเองเป็น “VaR” เป็นโมเดลที่ใช้กันอย่างแพร่หลายในการวิเคราะห์ความเสี่ยง และวิธีการคำนวณ VaR ก็มีหลายวิธี ซึ่งผมจะแยกประเภท ดังนี้ Non-Parametric วิธีการที่ไม่ต้องใช้ตัวแปรใดๆ ใช้แค่…

Basic Pair Trading with cointegration

สืบเนื่องจากที่แอดได้ไปเข้าร่วมประชุมกับทีมงาน Quantopian ที่ลอนดอน เมื่อปีที่แล้ว หัวข้อที่ทำ workshop กันในงานประชุมก็คือ การพัฒนาเทคนิคการ Hedging ด้วยการทำ Pair Trading ด้วย การใช้ค่าทางสถิติ Cointegration เข้ามาช่วย ซึ่งเป็นหัวข้อที่น่าสนใจมากอีกหัวข้อนึง  หลังกลับมาจากงานประชุม แอดจึงได้เขียนบทความขึ้นมา 2 บทความ เพื่ออธิบายทฤษฏี และ แนวทางการประยุกต์ใช้ Cointegration ในการทำ Pair Trading ซึ่งสามารถหาอ่านได้ใน blog (เดี๋ยวจะลงลิงก์ด้านล่างให้นะคะ) หลังจากลงบทความไปแล้ว ได้รับความสนใจอย่างมากหลังไมค์ มีแฟนเพจหลายท่านต้องการนำไอเดียไปพัฒนาต่อ ทางเราจึงนำทฤษฏีนี้เข้ามาในคอร์สใหม่ เพื่อ ทำการพัฒนา และ Backtest อย่างละเอียด ซึ่งตอนนี้กำลังอยู่ระหว่างการจัดทำ ระหว่างนี้ เลยนำไฟล์ Source code มาฝากหลายๆ ท่านที่สนใจกันก่อนค่ะ เผื่อใครอยากนำไปพัฒนาต่อ และ Backtest ด้วยตัวเอง ไม่ต้องรอเรียนก็จะได้สามารถทำได้  (สำหรับการสอนอย่างละเอียดรวมถึงการ Backtest เพื่อใช้งานจริง…

ทำไม กองทุนอันดับหนึ่งของโลก อย่าง “Bridgewater” (by Ray Dalio) ที่ไม่เคยประกาศกลยุทธ์ใหม่เลยมาตั้งแต่ปี 1996 จึงตัดสินใจเปิดตัวกลยุทธ์ “Optimal Porfolio” อย่างเป็นทางการ?

เป็นที่ทราบกันดีอยู่แล้วให้กลุ่มผู้สนใจการลงทุนว่า ถ้าจะให้พูดถึงกองทุนระดับบิ๊กๆ ของโลก ชื่อของ กองทุน “Bridgewater Associates” ของนักลงทุนคนดังอย่าง คุณ “Ray Dalio” ต้องลองเข้ามาในหัวแน่นอน ควบคู่กันกันกับกองทุน “AQR Capital management” ที่นักลงทุนสายวิชาการอย่างคุณ “Marcos Lopez de Prado” ที่เราเคยพูดถึงกันไปแล้วทำงานอย่ด้วย ก่อนอื่นเรามาดู Performance ล่าสุดของ 2 กองทุนนี้กันก่อนดีกว่าค่ะ ขอยกการจัดอันดับอย่างเป็นทางการของ Quarter ที่ 2 ประจำปี 2018 มาให้ดูดังตารางด้านบนค่ะ (ใครอยากดูอันดับแบบเต็มๆ ทั้ง 113 อันดับ ขอเชิญตามลิงก์ท้ายบทความได้เลยค่ะ) อย่างที่พูดไปข้างต้น กองทุนอันดับหนึ่งคือ Bridgewater Associates กับ Asset under Management(AUM) $132.8 billions ตามมาติดๆ ด้วยกองทุนของคุณ Marcos สุดหล่อสายวิชาการ ไม่หวงไอเดียที่ผู้เขียนชื่นชอบมากๆ และติดตามมาตลอดไปอย่าง…