จัดการข้อมูลอย่าง Quants [Part2: จัดการ Missing Value และ คำนวณ Statistics สำหรับข้อมูลทั้งตลาด]

บทความชุดนี้เราจะมาเอาใจสายลงทุนกัน ด้วยบทความชุด “จัดการข้อมูลอย่าง Quants” ซึ่งจะประกอบไปด้วย 3 บทความด้วยกัน ดังนี้ 1.จัดการข้อมูลอย่าง Quants [Part 1: ดึงข้อมูลหุ้น S&P500 ทั้ง 500 ตัว] 2. หลากหลายวิธีกับการจัดการกับ “Missing Value” 3. จัดการข้อมูลอย่าง Quant [Part2: จัดการ Missing Value และ คำนวณ Statistics สำหรับข้อมูลทั้งตลาด บทความทั้งหมดจะเป็น Tutorial สำหรับผู้ที่สนใจการดึงข้อมูลหุ้นเพื่อการลงทุนแบบไม่เสียค่าใช้จ่าย! อ่านไปด้วย Coding ไปด้วยได้เลยครับ บทความที่ 3 นี้ นี้เป็นตัวต่อจากบทความที่แล้ว ฉะนั้นเราคาดหวังว่าผู้อ่านจะมีไฟล์ “sp500_data.xlsx” ที่เราทำกันมาในบทความที่ 1 กันแล้วนะครับ ถ้าท่านใดยังไม่มีไฟล์ สามารถอ่านวิธีการจัดการดาวน์โหลดข้อมูล และสร้างไฟล์ได้ที่ บทความที่ 1 “จัดการข้อมูลอย่าง Quants [Part…

หลากหลายวิธีกับการจัดการกับ “Missing Value”

หลายวันก่อนผมไมได้รับคำถามจากผู้เรียนในคอร์สมาว่า “ถ้ามีข้อมูลที่ Missing Value แล้วเราสามารถทำอะไรได้บ้างนอกจากลบวันที่มีค่า Drop มันทิ้งไป เราสามารถ Forward Fill (เติม Missing Value ด้วยค่าล่าสุดที่เรารู้) ได้ไหม” โดยปกติ Tutorial ทั้งไทย และต่างประเทศส่วนใหญ่ มักจะนำเสนอก็คือ การดึงข้อมูลมาจากผู้ให้บริการซักเจ้า จากชั้น Check ว่ามี Missing Value aka N.A. อยู่ในข้อมูลนั้นไหม ถ้ามี ก็ Drop มันทิ้ง ซึ่งใช่ครับในคอร์ส Python for Finance เราก็สอนแค่นั้น เพราะนั่นคือ คอร์สเบื้องต้นสอนความรู้กว้างๆ ถ้าในคอร์ส AI for Investment เราสอนอีกแบบโดยการใช้ Forward Fill ซึ่งก็เป็นอีกวิธีในการจัดการกับข้อมูล Missing Value เหล่านั้นเพื่องานเฉพาะสำหรับ Project ในคอร์สนั้นๆ แต่คำถามนั้นทำให้ผมคิดได้ ว่ามันเราลืมพูดถึงเรื่องนี้ไปสนิทเลย…